
NOTATION 

X = x/L is the dimensionless coordinate; x is the coordinate, m; L is the thickness of 
the sample, m; 8 = ~0(t - t0)/Lq0 is the dimensionless temperature; t is the sample tempera- 
ture, K; to is the temperature of the surround medium, K; ~0 is the thermal conductivity of 
the standard, W/(m'K); q0 is the amplitude of the heat flow oscillations, W/m2; Fo is the 
Fourier number; Pe is the Peclet number; m = m0L2/a0 is the dimensionless angular frequency; 
~0 is the angular frequency of the heat flow oscillations, rad/sec; a 0 is the thermal dif- 
fusivity of the standard, m2/sec; A = ~/~0 is the dimensionless thermal conductivity; ~ is 
the thermal conductivity of the sample, W/(m'K); A = a/a 0 is the dimensionless thermal dif- 
fusivity; a is the thermal diffusivity, m2/sec; R = rcl0/L is the dimensionless thermal re- 
sistance; r c is the contact thermal resistance of the gap, mZ'K/W; C = Ccha0/10L is the 
dimensionless heat capacity; C c is the heat capacity of the contact gap, J/(m3"K); and L* is 
the characteristic dimension of the structure of the porous medium, m. 
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PERMEABILITY AND PERCOLATIONAL PROPERTIES OF 

SEDIMENTARY ROCK 

A. V. Mal'shakov and V. A. Efimov UDC 532.546 

Formulas for calculating the absolute and relative phase permeabilities of rock 
are obtained, taking account of the percolational properties of the pore space. 

INTRODUCTION 

The absolute and relative phase permeabilities are among the most important character- 
istics of sedimentary rock, and are determined primarily by the structure of the pore space. 

Until recently, a simple model consisting of a bundle of parallel noninteracting capil- 
laries was widely used to calculate the permeability. Considerable effort has been expended 
in trying to understand the factors responsible for the rock permeability and to eliminate 
the deficiencies of the simple capillary model. Percolation-theory concepts and methods, 
taking account of the coupling between different capillaries, have been of particular im- 
portance here [1-6]. 

In the usual formulation of the percolation-theory problem for the description of pro- 
cesses occurring in rock, the pore space is represented as large pores (points) and thin 
channels (bonds connecting the pores) [2]. The permeability in this lattice is determined 
basically by the thin channels; with decrease in their number, the interconnection of the 
pore space is disrupted and fluid filtration is impossible. 

In recent years, the idea that there is no closed porosity in collector rock (at least, 
in terrestrial rock) [7]. Hence it follows that, with any porosity values, there is an in- 
terconnected pore space through which the flow of various fluids is possible [8]. There- 
fore, the filtrational properties must evidently be associated not with the geometric coup- 
ling of the pore space but with the coupling of the conducting pores. 
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It was concluded in [i0] that the conductivity of very disordered media with a broad 
distribution of local conductivities is determined by the elements with the appropriate con- 
ductivities which first create the flow, if the elements of the medium are connected in 
series in the order of increasing resistance. Then the permeability problem reduces to the 
percolational problem with a threshold permeability value k c- 

In [i], analogously to [11], an expression for the permeability was obtained 
2 

k --~ re si, (1 )  

where E i is the volume fraction of pores with r i ~ r e . 

In deriving Eq. (i), it is assumed that, after the appearance of an infinite cluster 
of filtrational pores, the addition of new groups of pores of radius r i < r c will have little 
influence on the permeability. In reality, because of the continuity of the size distribu- 
tion function of the pores, the addition of new pores considerably increases the permeability 
[ 6 ] .  

The concept of [I0] was further developed in [12, 13]. All the elements of the medium 
with permeability k ~ k c are assigned the value kc, and those with k < k c are assigned zero 
permeability. As a result, the following equation for k is obtained 

k ~ - a k o ( p ( k c ) - - p c )  t, (2 )  

where  a i s  a c o n s t a n t ;  p ( k  c )  i s  t h e  p r o b a b i l i t y  t h a t  a g i v e n  p e r m e a b i l i t y  w i l l  be g r e a t e r  
t h a n  o r  e q u a l  t o  kc ;  t = 1 .9  f o r  a t h r e e - d i m e n s i o n a l  l a t t i c e .  

In [14], numerical modeling for a two-dimensional lattice confirmed the quantitative 
accuracy of Eq. (2) and the conclusions of [i0] for various conductivity distribution laws. 

In [15], a very successful recent work, the concepts of [10-12] were used to calculate 
the absolute permeability on the basis of the mercury depression curve. In an approach tak- 
ing account of the most important conducting paths in calculating k, the following formula 
for the absolute permeability was derived in [15] 

k (1/89) h h h 
= (Lmax)Z(Lmax/Lc) mS(Lmax), (3) 

where L c is the pore breakdown size, determined from the mercury depression curve; Lmax h is 
the optimal pore size for calculating the permeability, when the function f(L), which is the 
volume of depressed mercury multiplied by L 3, is a maximum. 

The parameter in Eq. (3) which is the most difficult to determine is Lmax h, the physi- 
cal meaning of which is not obvious. 

i. FORMULAS FOR THE ABSOLUTE AND RELATIVE PHASE PERMEABILITIES 

The absolute and relative phase permeabilities of the rock are calculated using the 
capillary-pressure curves obtained by the semipermeable-membrane method or the mercury de- 
pression method, taking account of the percolational properties of the pore space. In con- 
trast to [15], a different scheme is used to determine the characteristic permeability k c. 

The critical permeability k c is defined by the expression 

r o 

- r~ f (r) dr, ( 4 )  
8 

re 

where r0 is the pore radius below which the pores are nonfiltrational; f(r) is the density 
function of the pore size distribution; r c corresponds to the condition of formation of an 
infinite pore cluster with r > r c in the semipermeable-membrane method or the mercury-de- 
pression method in a rock sample. 

Rewriting Eq. (4) in terms of the capillary-pressure curve [4], this curve is inte- 
grated from the residual saturation Snw ~ of the nonwetting phase to the maximum saturation 
S*nw obtained by the semipermeable-membrane method or the mercury-depression method. Then, 
taking cos e ~ 1 

Sn% 
k c ,-." mdZ dSnw 

- - - ~  Pe j" pc3a;(S~nw), (5) 
so w 
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where Pca(Snw) is the capillary pressure. 

To calculate the permeability, it remains to determine the probabilities p and Pc in 
Eq. (2). As is known, the problem of the displacement corresponding to the mercury depres- 
sion in the sample and the displacement of water by air in the semipermeable-membrane method 
may be formulated in terms of percolation theory. In this case, the onset of filtration of 
the nonwetting phase is equivalent to the formation of an infinite cluster of filtrational 
pores of the sample [17-19]. The infinite cluster exists when Pca > Pcac; the asymptotic 
behavior of the volume fraction of nonwetting phase Snw close to the percolation threshold, 
i.e., at small bpc a = Pca -Pcac > 0, is as follows 

s ~  A~a (6) 

where (3 is the index for the probability that a filled pore belongs to the infinite cluster. 

A characteristic capillary-pressure curve obtained by the semipermeable-membrane method 
is shown in Fig. la in the coordinates Pca and Snw. The actual data are denoted by points. 
The characteristic saturation values of the nonwetting phase Snw ~ and S*nw on the pca(Snw) 
curve are denoted by dashed lines. To find 6, the quantity Snw ~ which does not participate 
in the formation of an infinite pore cluster but fills the dead-end pores appearing at the 
end of the sample may be subtracted from Snw. In addition to the foregoing, note that Eq. 
(2) is universal with respect to t, i.e., t does not depend on the properties of the medium 
at the micro level, but only on the large-scale properties of the percolational system, 
which is expressed in that t only depends on the dimensionality of the system. 

This universality is disrupted when the permeability (or conductivity) at the micro 
level depends on the geometric properties, for example, the channel radius: k ~ r n. It 
follows from the relation f(k)dk = h(r)dr that f(k) = h(r)dr/dk. For media with a density 
function of the probability distribution of the form f(k) ~ k -~ (0 < a < i), the expression 
for the permeability is [20] 

k N (p - -  pc) '+~/(1-~'>. ( 7 )  

Using Eqs.  ( 5 ) - ( 7 ) ,  t h e  a b s o l u t e  p e r m e a b i l i t y  i s  found  in  t h e  form 

k ~ ma2 sn* dSnw IS* ~o ~7 
- T  p~ , ' (8) 

sO p. (S~) 
ca  

where t = [t + a/(l - ~]/~. For the case of capillary tubes, k ~ r 3, i.e., ~ = 2/3. 

The relative phase permeabilities for water kw(S) and petroleum kp(S) in the case of 
drainage (displacement of wetting phase by nonwetting phase) may be calculated from the fol- 
lowing formulas, under the assumption of jet flow of the phases [8, 17] 

Po t' (S.w-- s ~ )  /k, (9)  
Snw 

Snw 
kp (1__ Snw) ~ ma 2 dSnw) (Snw - S0~r//~ - 7 -  [ p % ( S  _,,,  .... ( l o )  
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Fig. 3. Curves of relative phase permeability with respect 
to nonwetting (i) and wetting (2) phases. 

In contrast to the formulas of [21], which contain parameters that cannot be determined 
directly from experiment, Eqs. (8)-(10) permit the calculation of the absolute and relative 
phase permeabilities in the presence of capillary-pressure curves. 

2. COMPARISON OF THEORETICAL AND EXPERIMENTAL PERMEABILITIES 

The absolute and relative phase permeabilities are calculated for samples of sandstone 
and aleurite from the Komsomol, Tyansk, and Samotlorsk deposits. Capillary-pressure curves 
Snw(Pc a) have been obtained by the semipermeable-membrane method at TsL Tyumen'geologiya and 
VNIGIK for samples from the first two deposits and by the mercury-depression method at the 
All-Union Scientific Research Institute of Natural Gas for the Samotlorsk samples. 

Experimental data obtained by the semipermeable-membrane method for two rock samples 
with absolute permeability 20.10 -15 m 2 (crosses) and 96.10 -15 m 2 (points) are shown in Fig. 
Ib in the logarithmic coordinates Snw-Pc a. With gradual increases in pressure, the satura- 
tion of the nonwetting phase increases to some characteristic value Snw ~ (Fig. la), at which 
a coupled pore cluster appears. Until the front reaches the end of the sample, the depen- 
dence Snw(Pc a) is described by curve i; then the finite size of the sample begins to influ- 
ence the displacement, and the experimental data are approximated by curve 2. 

Similar behavior was observed in a numerical experiment on the diffusional front in the 
mutual diffusion of two types of particles in a square lattice, when the front reaches one 
boundary [22]. 

In Fig. 2, theoretical values of the absolute permeability from Eq. (8) (points) are 
compared with experimental data and the results of the simple capillary model (crosses). 
In the calculations, a surface tension of 70 mN/m is assumed [23]. Taking account of the 
accuracy in measuring the permeability and in determining Pc and Snw ~ as well as the as- 
sumption a ~ 1, the agreement of Eq. (8) with experiment may be regarded as satisfactory. 
The values of k obtained by the capillary model, disregarding the percolational character- 
istics of the pore space, are considerably higher than the experimental data. 

The curves for the relative phase permeabilities for drainage obtained on the basis of 
Eqs. (9) and (i0) agree with the analogous curves for experimental data on steady filtra- 
tion. The curves in Fig. 3 show the relative phase permeabilities obtained from Eqs. (9) 
and (i0) for sandstone of the Tyansk deposit with k = 19.1"10 -15 m 2, while the points cor- 
respond to experimental data on kp and k W [24] obtained for a Samotlorsk sample with k = 
22.6"i0 -Is m 2 by the steady-filtration method. 

1268 



CONCLUSIONS 

i. Simple formulas have been obtained for the absolute and relative phase permeabili- 
ties of rock samples using the capillary-pressure curves without fitting parameters. 

2. It has been shown that calculation of the permeability from the simple capillary 
model, disregarding the percolational properties of the pore space, leads to incorrect re- 
sults. 

3. The exponent in the expression for the permeability is not universal. It depends 
on the structural features of the pore space and the conducting properties of its component 
parts. 

NOTATION 

k, kw, kp, kc, absolute and relative phase permeabilities and characteristic permeabil- 
ity; r, pore radius; rc, breakdown pore radius; S(L), proportion of coupled pore space formed 
by pores of radius L or more; m, porosity; o, surface tension; S, Snw, saturation of pure 
space of wetting and nonwetting phases; t, conductivity index. 
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